statistics.py¶
pycmtensor.statistics
¶
PyCMTensor statistics module
This module contains methods for calculating the statistics of the estimated parameters.
Functions: - variance_covariance(hessian): Computes the variance covariance matrix given the Hessian. - rob_variance_covariance(hessian, bhhh): Computes the robust variance covariance matrix given the Hessian and BHHH matrices. - t_test(stderr, params): Computes the statistical t-test of the estimated parameters and the standard errors. - p_value(stderr, params): Computes the p-value (statistical significance) of the estimated parameters using the two-tailed normal distribution. - stderror(hessian, params): Calculates the standard error of the estimated parameters given the Hessian matrix. - rob_stderror(hessian, bhhh, params): Calculates the robust standard error of the estimated parameters given the Hessian and BHHH matrices. - correlation_matrix(hessian): Computes the correlation matrix from the Hessian matrix. - rob_correlation_matrix(hessian, bhhh): Computes the robust correlation matrix from the Hessian and BHHH matrices.
variance_covariance(hessian)
¶
computes the variance covariance matrix given the Hessian
Parameters:
Name | Type | Description | Default |
---|---|---|---|
hessian |
ndarray
|
a 2-D hessian matrix |
required |
Returns:
Type | Description |
---|---|
ndarray
|
the variance covariance matrix |
Notes
The variance covariance matrix is calculated by taking the inverse of the (negative) hessian matrix. If the inverse is undefined, returns a zero or a large finite number.
rob_variance_covariance(hessian, bhhh)
¶
computes the robust variance covariance matrix given the Hessian and the BHHH matrices
Parameters:
Name | Type | Description | Default |
---|---|---|---|
hessian |
ndarray
|
the hessian matrix |
required |
bhhh |
ndarray
|
the BHHH matrix |
required |
Returns:
Type | Description |
---|---|
ndarray
|
the robust variance covariance matrix |
Notes
The robust variance covariance matrix is computed as follows:
t_test(stderr, params)
¶
computes the statistical t-test of the estimated parameter and the standard error
Parameters:
Name | Type | Description | Default |
---|---|---|---|
stderr |
Series
|
standard errors |
required |
params |
dict
|
estimated parameters |
required |
Returns:
Type | Description |
---|---|
list
|
t-test of the estimated parameters |
p_value(stderr, params)
¶
computes the p-value (statistical significance) of the estimated parameter using the two-tailed normal distribution, where p-value=\(2(1-\phi(|t|)\), \(\phi\) is the cdf of the normal distribution
Parameters:
Name | Type | Description | Default |
---|---|---|---|
stderr |
Series
|
standard errors |
required |
params |
dict
|
estimated parameters |
required |
Returns:
Type | Description |
---|---|
list
|
p-value of the estimated parameters |
stderror(hessian, params)
¶
calculates the standard error of the estimated parameter given the hessian matrix
Parameters:
Name | Type | Description | Default |
---|---|---|---|
hessian |
ndarray
|
the hessian matrix |
required |
params |
dict
|
estimated parameters containing numpy arrays |
required |
Returns:
Type | Description |
---|---|
list
|
the standard error of the estimates |
Note
The standard errors is calculated using the formula:
rob_stderror(hessian, bhhh, params)
¶
calculates the robust standard error of the estimated parameter given the hessian and the bhhh matrices
Parameters:
Name | Type | Description | Default |
---|---|---|---|
hessian |
ndarray
|
the hessian matrix |
required |
bhhh |
ndarray
|
the bhhh matrix |
required |
params |
dict
|
estimated parameters |
required |
Returns:
Type | Description |
---|---|
list
|
the robust standard error of the estimates |
Note
The robust standard errors is calculated using the formula:
correlation_matrix(hessian)
¶
computes the correlation matrix from the hessian matrix
Parameters:
Name | Type | Description | Default |
---|---|---|---|
hessian |
ndarray
|
the hessian matrix |
required |
Returns:
Type | Description |
---|---|
ndarray
|
the correlation matrix |
rob_correlation_matrix(hessian, bhhh)
¶
computes the robust correlation matrix from the hessian and bhhh matrix
Parameters:
Name | Type | Description | Default |
---|---|---|---|
hessian |
ndarray
|
the hessian matrix |
required |
bhhh |
ndarray
|
the bhhh matrix |
required |
Returns:
Type | Description |
---|---|
ndarray
|
the tobust correlation matrix |